

Simple discussion about inverse of a square matrix

Definition:

Let A be an nxn matrix. The nxn matrix A-1 is the inverse of A, if the following conditions hold:

$$AA^{-1} = I$$
 and $A^{-1}A = I$

Note that not every square matrix has an inverse. If A exists, we say A is non-singular or invertible.

E al: Are the two conditions $AA^{-1}=I$ and $A^{-1}A=I$ equivalent?

Ans: Yes, it follows from the associativity of matrix multiplication. What implies is a proof of the following result:

 $AB = I \iff BA = I$, where A is an $n \times n$ square matrix.

proof:

$$OAB=I \Rightarrow BA=I$$

Since AB=I, det(AB)=det(I)

 \Rightarrow det (A). det (B) = 1

⇒ det(B) ≠ 0

Since $B=BI=B\cdot(AB)=(BA)B$

 \Rightarrow (BA-I)B=0, where 0 is the Onen square matrix.

Since det(B) \$\pm 0, B^-1 exists.

$$\Rightarrow$$
 $(BA - I)B \cdot B^{-1} = O \cdot B^{-1}$

② Similarly, we can prove BA=I ⇒ AB=I. 1

In Conclusion, the left inverse of A_{nxn} is also the right inverse and vise versa.

(Q2. Is the inverse of Ann unique?

Ans: Yes. What implies is a proof of the following result: If BA=I and CA=I, then B=C.

proof:

Since $B = BI = B \cdot (CA)$, and according to the proof of AI,

CA = I = AC

then $(*) = B \cdot (Ac)$

=(BA) C

 $= I \cdot C$

= C.

Hence, the inverse of Anxn is unique. @